EC6403 syllabus Electromagnetic Fields Regulation 2013 Anna University
UG syllabus R 2013

EC6403 syllabus Electromagnetic Fields Regulation 2013 Anna University

EC6403 syllabus Electromagnetic Fields

EC6403 syllabus Electromagnetic Fields Regulation 2013 Anna University free download. Electromagnetic Fields Syllabus free download.

UNIT I STATIC ELECTRIC FIELD EC6403 syllabus

Vector Algebra, Coordinate Systems, Vector differential operator, Gradient, Divergence, Curl, Divergence theorem, Stokes theorem, Coulombs law, Electric field intensity, Point, Line, Surface and Volume charge distributions, Electric flux density, Gauss law and its applications, Gauss divergence theorem, Absolute Electric potential, Potential difference, Calculation of potential differences for different configurations. Electric dipole, Electrostatic Energy and Energy density.

UNIT II CONDUCTORS AND DIELECTRICS Electromagnetic Fields syllabus

Conductors and dielectrics in Static Electric Field, Current and current density, Continuity equation, Polarization, Boundary conditions, Method of images, Resistance of a conductor, Capacitance, Parallel plate, Coaxial and Spherical capacitors, Boundary conditions for perfect dielectric materials, Poisson‟s equation, Laplace‟s equation, Solution of Laplace equation, Application of Poisson‟s and Laplace‟s equations.

UNIT III STATIC MAGNETIC FIELDS EC6403 syllabus

Biot -Savart Law, Magnetic field Intensity, Estimation of Magnetic field Intensity for straight and circular conductors, Ampere‟s Circuital Law, Point form of Ampere‟s Circuital Law, Stokes theorem, Magnetic flux and magnetic flux density, The Scalar and Vector Magnetic potentials, Derivation of Steady magnetic field Laws.

UNIT IV MAGNETIC FORCES AND MATERIALS Electromagnetic Fields syllabus

Force on a moving charge, Force on a differential current element, Force between current elements, Force and torque on a closed circuit, The nature of magnetic materials, Magnetization and permeability, Magnetic boundary conditions involving magnetic fields, The magnetic circuit, Potential energy and forces on magnetic materials, Inductance, Basic expressions for self and mutual inductances, Inductance evaluation for solenoid, toroid, coaxial cables and transmission lines, Energy stored in Magnetic fields.

UNIT V TIME VARYING FIELDS AND MAXWELL’S EQUATIONS EC6403 syllabus

Fundamental relations for Electrostatic and Magnetostatic fields, Faraday‟s law for Electromagnetic induction, Transformers, Motional Electromotive forces, Differential form of Maxwell‟s equations, Integral form of Maxwell‟s equations, Potential functions, Electromagnetic boundary conditions, Wave equations and their solutions, Poynting‟s theorem, Time harmonic fields, Electromagnetic Spectrum.

Subject Name Electromagnetic Fields
Subject Code EC6403
Regulation 2013

EC6403 syllabus click here to download




EC6403 notes click here


Electromagnetic Fields question bank click here


EC6403 important questions click here


 

Leave a Reply

Your email address will not be published. Required fields are marked *